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INTRODUCTION

The purpose of this manual is to provide a ccxnpact reference for the thermo-

phys:.cal properties required in the design of space radiator—condensers. | This
efforb was performed as part of the Space Radiator-Condenser Design and Per-
formance Computer Program under contract NAS 9-4884 with the NASA Manned Space-
craft Center. It is intended that this manual supplement these computer programs
by providing, in one report, the fluid and construction materials properties

required as inputs.

SUMMARY
Section 1.0 presents the results of a power system survey undertsken to assess
the utilization of working fluids and materials on actual and proposed space

electric power systems employing direct condenser-radiators.

Section 2.0 contains data on five working fluids. Their selection is based on
a survey of thelr current use in actual direct condensing systems or contemplated

future systems.

Section 3.0 contains the properties of candidate radiator materials. Materials
other than those in current or proposed use have been included to extend the
usefulness of the camputer program as bonding and Joining technology advances.
Materials fabrication compatibility and working fluid compatibility are indicated
to aid in the selection of suitable radiator-condenser materials for a given

application.

Section 4.0 presents the emittance coatings which would be suitable for extended

service in space-vacuum conditions. Solar and thermal absorptivity values are
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included where availeble from the literature. Coating bonding compatibility
with substrates, methods of application, and service temperature limitations are

tabulated to aid in the proper coating selection for the intended application.

Section 5.0 presents some of the areas which, upon searching the literature,

were found to be in need of further study.
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1.0 POWER SYSTEM SURVEY

A survey of space electrical power systems employlng direct condenser-radiators
presently being investigeted and those considered as primary or candidate systems
for spacecraft applications is summerized in Table 1. Only those systems which
have recelved serious developmental attention or extensive study were included.
Since the only sources utilized in this survey were exoteric company and
government reports, some systems may have inadvertently been overlooked. With
these qualifications, the fluids selected are: mercury, potassium, water,

rubidium and the organics, Dowtherm-A, ortho-xylene and ethylbenzene.

1.1 Mercury

During the last decade, mercury rose as the most prominent Rankine cycle working
fluid for electrical generation space spplication. The SNAP 1 (SPUD), the thermal
reactor powered SNAP 2 and SNAP 8, and the solar powered Sunflower accelerated
mercury to the forefront as a space system working fluid. The cancellation of the
intended mission spelled the end of the SNAP 1 (SPUD) system. The SNAP 2 system,
originally space oriented, has been redirected to a study-type system test
program due to lack of specific application. The SNAP € program suffered a
similar fate, being relegated to a component development program as emphasis
shifted from high to low output power generation systems. The highly successful
solar powered Sunflower system has been bypassed for lack of a mission and waning
interest in solar powered mercury systems. Regardless of these events, mercury
still remains as one of the more prominent working fluids for Rankine cycle power

plants with outputs ranging from 3 to 300 KW.
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Radiator masterials in direct mercury radiastor-condensers varied depending on
intended application. The SNAP 1 (SPUD) radiator was fabricated from 316
stainless steel throughout. Two types of SNAP 2 radiastor-condensers were
considered: Haynes Alloy No. 25 tubing and eluminum fins and 17.7 molybdenum
tubes and copper fins. The Sunflower system used a radiator-condenser composed
of 347 stainless steel tubes and 1100-0 (non-structursl) sluminum fins. One of

the SNAP 8 direct radistor-condenser designs utilized Heynes Alloy No. 25 tubing

and aluminum fins.

1.2 Potassium

Potassium found spplication ss a working fluid in the SPUR/SNAP 50 system which
has also been reduced to component development. The use of potassium is still
very attractive for future space gpplications pending fast reactor revival and
the availability of container materials suitable for 10,000 hours or more
service at the higher temperatures seen in these systems. In 1965, TRW prepared
a potassium Rankine cycle test capsule to evaluate the boiling and condensing
properties of potassium in space. A failure of the boost vehicle during launch
led to an abrupt conclusion to the experiment. Another test capsule is being
built to repeat the experiment, indicating a continuing interest in potassium

as a cycle working fluid.

The radiator materials proposed for the SPUR/SNAP 50 direct condenser were 316
stainless steel tubing and 316 stainless steel clad copper fins. The TRW heat
transfer test capsule radiator-condenser utilized 316 stainless steel tubing with

copper fins brazed to the tubing (88).
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1.3 Water

A steam system was investigated utilizing the SNAP 8 reactor by ASTRA, Inc. (73).
The proposed systems utilized nuclear and solar heat sources. Radiator-condensers
were initially considered to be alumimum (tube and fins) with beryllium as the
witlmete masterial., TRW and cther companies have sponsored internally funded

studies in this area.

1.4 Rubidium
The initial working fluid of the ASTEC program (Advanced Solar Turbo Electric

Concept) was rubidium. The program was redirected before reaching the system stage.

A radiator-condenser test segment (tubes and fins) was fabricated from Inconel.
Beryllium tubes and fins would have been the ultimate radiator-condenser materials.
Rubidium is not considered to be & likely working fluid for the space applications

presently under investigation.

1.5 Organics

Interest in organic fluids for speace power applicetions has developed rapidly in
the last five years. Sundstrand (74) is currently involved in a development
program for the Navy and Air Force for a 1.5 KW solar power plant using Dowtherm-A.
No details are available as to the materials being considered. TRW has concluded
that Dowtherm-A is the most favorable working fluid for an isotope-heated system
as a part of the Manned Mars Mission Study (75). TRW has recently been awarded

a contract to build a system for a Multi-tube Orbital Rankine Experiment (7D
using Dowtherm-A as the working fluid. Tubes and headers for this system will

be 347 stainless steel. Fins will be 5083 aluminum. Various Binary systems
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proposed included ortho-xylene or ethylbenzene as the bottom cycle fluid.

Aluminum tubes and fins were proposed in most cases.

A comperison of various organic working fluids and their properties is shown in
Table 2. From this chart, ethylbenzene, ortho-xylene snd Dowtherm-A were chosen
as the most promising for space systems, based on favorasble combinations of their
vepor pressure/temperature relationships, freezing point, corrosive nature, and

thermal stability.
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2.0 THERMO-PHYSICAL PROPERTIES OF WORKING FLUIDS
The thermo-physical properties of eight primary and candidate working flulds

have been prepared as & function of temperature. These include _water, mercury,

rubidium, potassium and three organics (ortho-xylene , ethylbenzene and _Dowtherm-A).

The working f’luids B tneir respective properties and a reference Tigure number for

each property are summarized in Table 3.

The properties compiled for each working fluid are those necessary as inputs to
the caomputer programs and are as follows: molecular weight, heat of vaporization,
specific heat, specific heat ratio, density, absolute viscosity, liquid-vapor
surface tension, thermal conductivity and vapor pressure. These appear on
Figures 1 through 49. Single valued quantities are given for molecular weight,
freezing point, critical temperature, critical pressure, specific heat ratio and,
in some cases, specific heat. All data is presented in the units required by the

design and performance analysis radiator computer programs.

In most instances, the information is the result of the latest test data availsable
in the literature, but in some cases, most notably rubidium, the curves represent

calculated values since no test data could be found.
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3.0 CONSTRUCTION MATERIALS PROPERTIES

3.1 Tube, Header and Fin Thermo-Physical Properties

Seven properties were selected and tabulated for each of the candidate radistor
materials. These properties include density, tension moudules of elasticity,
thermel conductivity, specific heat, thermel expansion, yield strength (.2%),
and melting temperature. Only the density, tension modulus of elasticity and
thermal conductivity are required as inputs to the camputer program, but thermal
expansion was included to assess f:[.n/tube compatibility, yleld strength and
melting temperature to establish service limits, and specific heat to facilitate
transient study. A cross-reference between each candidate material and the
respective property curves is given in Table 4 including figure number and the
reference mumbers. Where important and available, the information is presented
as a function of temperature in the referenced figures. Otherwise, a single
value is contained directly in Table 4. Materials properties as a function of
temperature are found on Figures 50 through 58. All data is presented in the

units required by the design and performesnce analysis radiator computer programs.

Some of the properties listed vary widely depending on the form of the material,
i.e., sheet or bar, heat-treated or unheat-treated, etc. This is especially true
of the yield strength. In each case, the form most representative of that usable
in condenser-rediators was listed or, in some cases, a range if more than one

form is applicable.

3.2 Materials Compatibility with Working Fluids

A litersture search was conducted to obtain ma.teria.ls/working fluid compatibility

information. The working fluids considered were those found to be candildate

-8 -
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fluids for space systems as a result of the system survey (section 1.0), namely,
mercury, water, rubidium, potassium and selected organics. The materials
considered included, but were not limited to, those candidate materials of

section 2.0. Tables 5(a) and 5(b) ere a sumary of the information.

The temperatures on this table represent (a) the test temperature at which little
or no corrosion (loss or gain in weight) was detected, (b) acceptsble corrosion
temperature limit extrapolasted from test data at lower temperatures, or (c)
temperature limits based on tests of similar fluids. In each case, the test
duration is less than 1000 hours, more than 10,000 hours, or in some cases as
noted. Where no date is presented either (1) none could be found, (2) the normal
condenser operating temperature for that fluld is higher than the service tempera-
ture of the material or (3) the cambination of fluid and container material is

illogical.

3.2.1 Water
The temperatures given in Tables 5(a) and 5(b) are based on the results of both

static and dynamic tests.

The static corrosion rates were determined as a byproduct of autoclave tests
conducted at temperatures below 500°F. The tests were performed for such
purposes as crevice corrosion and bearing combination studles in connection with

water-cooled reactor systems.

Dynamic testing was carried out at temperatures between 500 and 600°F which is
the normal operating range of water-cooled reactors. Velocities ranged from 1/60

to 30 fps. The dynemic corrosion rates of materials studies at 500°F is increased

- -9 -
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between 5 and 20 times when tested at 600°F (17).

The effects of water velocity on the corrosion rate of 300 series stalnless
steel are delineated in reference (19). A weight loss of 10 mg/cm® et 10 £t/sec
solution velocity was established after 40O test hours. The rate increased 3 to
15 times that amount as velocities were tripled and quadrupled for the same

number of hours tested.

Studies (18) on high purity water corrosion indicated that the use of water with
a pH above 10 caused the corrosion rate of mild steel to decrease with exposure
time. The corrosion of aluminum end its alloys sbove 200°F took the form of
serious intergranular attack. Decreasing the pH to 2 could extend the operating
temperature range to sbout 600°F (19). However, regulation of pH to 2 (acidic

condition) may not be feasible in fuel cell radistors using hydrogen and H20

mixtures.

Aluminum alloys containing nickel, iron, titanium, silicon, beryllium and zirconium
tend to displace the cathodic reaction from the aluminum surface and mske the

alloys less sensitive to corrosion. The addition of hydrogen to the water was

also found to be beneficial.

A considerable increase of corrosion in flowing as against static water was noted
by researchers (19) and increasing the ratio of area of aluminum exposed to

volume of water was found to reduce dynamic corrosion.

Beryllium and its alloys showed good resistance to corrosion below 200°F (about

one mil penetration per year). Above this temperature the corrosion rate increased

- 10 -
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rapidly and became more unpredictable (19).

Megnesium alloys had high corrosion rates (0.1 mil/day) at 300°F (19). Their

use should be restricted below 150°F for long duration operation.

Dynamic corrosion studies on copper-nickel {70-30) indicated thet low corrosion
rates could be maintained at 200°F with 30 fps water velocity. At 500°F the same
rate could be maintained by the addition of hydrogen into the water. Corrosion
rates at SOOOF and 30 fps without the presence of hydrogen increase sbout 200
times compared to the 200°F rate of 34 mg/in-yr. The water pH was maintained

at 7 throughout the tests (17). The corrosion rate of copper tubing increases
rapidly with increasing water velocity and temperature. No water corrosion data

was 1mmediately avallable on the refractory metals.

3.2.2 Mercury

The temperatures indicated in Tables 5(a) and 5(b) are a result of extensive
mercury materials compatibility work done at TRW (30,31,32). Refluxing capsules
and circulation loops operating between 700 and 1100°F provided the basis for
most corrosion temperature limitations. These tests were corroborated to l300°F
on selected materials by NASA-Lewis. Studles at Brookhaven National Laboratory
have provided endurance testing data for boiling systems in the SNAP 8 temperature

range and higher (86).

3.2.3 Rubidium
Materials compatibility data with rubidium include berylliium, cobalt alloys,

nickel alloys, some refractories, stainless steels and vanadium. Testing duration
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has been in the 1000 hour range. The temperature range investigated is a direct
result of the normal condensing temperature range associsted with rubidium cycles
(1000-1500°F). Compatibility studies have generally been aimed at screening
only those materials that can structurally withstand the temperature range.
Refluxing liquid vapor capsules and some dynamic loop testing provided the bulk

of information available in the literature.

3.2.4 Potassium

Refluxing capsules and dynamic loop tests of 1000 hours or less dominate the
current investigations and provide the basis for the corrosion tempersture limits
shown in Taeble 5. Dynamic 5000 hours 316 stainless steel loop tests with low

velocity potassium at 4 in/sec indicated corrosion rates of about 0.12 mils per
year (14).

3.2.5 Hydrocarbons
3.2.5.1 Dowtherm-A
Corrosion data for Dowtherm is limited. The fluid is not corrosive and does not
scale with standard materials of construction. The materials containing temper-
atures in Table 5 are considered to be standard. The refractory metals show no

compatibility temperatures but probebly are compatible to the operating limits

of Dowtherm-A.

When contaminated with water, Dowtherm reacts to form highly corrosive hydrocholorie
acid. 1In this respect, where contamination with water is possible, materials

subject to corrosion by the acid should be used with caution.

- 12 -
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3.2.5.2 Ortho-xylene and Ethylbenzene

Over 1000 hours of testing indicated that 300 series stainless steel was not
attacked when suspended in liquid ortho-xylene at 550°F. Low temperature tests
at 180°F on 347 stainless steel, 406 stainless steel, 1010 carbon steel, pure
sluminum, aiuminum aiioys, Inconel, Vanadium alloy { Ty - 6A1 - L4V) and Haynes 25
showed no evidence of attack (24). Capsule tests of 304 stainless steel and

1010 carbon steel at about 700°F for almost 1000 hours indicated no effects on
either material (25). The remainder of the corrosion data listed for ortho-xylene
and ethylbenzene are actually for biphenyl and isoproplybiphenyl. This substi-
tution was made because of the similarity in their corrosion characteristics and

the availability of data.

Extensive static corrosion tests (26) were made with biphenyl at 500°F for L4500
hours and T750°F for 4700 hours. Most of the general material categories listed
on Tables 5(a) and 5(b) were covered by the tests. Dynamic corrosion rates were
available for isoproplybiphenyl at velocities from O to 27 fps. Corrosion rates
increased by a factor of 20 at 27 fps over static corrosion rates for 300 series

stainless.

3.3 Tube and Header Material Meteoroid Protection Capability

Meteoroid collision represents the greatest potential hazard to fluid radiators

in spece. Data from unmanned earth orbiting satellites has reinforced early
theories used to predict armor thickness requirements. Correlations are presently
based on material properties (modules of elasticity, hardness and density) as
well as some evaluabion of meteoroid flux. The correlation currently advocated

by NASA-Lewis utilizes the modulus of elasticity and density of the armor.

-13 -
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This approach is used by TRW to determine the meteoroid armor thickness in the

radiator design programs.

The following expression is a form of that resulting from the work by Loeffler,

Lieblein, Clough of NASA~Lewis and Whipple, Cook and others at Harvard (84):

.25 1
tg = 3.31 %——l%—P-G)- (P E?) 6
where ta = armor thickness, inches
A = vulnerable area, ft° (taken as the inside tube area)
P(o) = probability of no meteoroid penetrations
° = armor density, 1b/in.

E = modulus of elasticity of armor, psi

rt = mission time, days

The properties of density (/) and modulus of elasticity (E) for sll radiator

materials are referenced in Table 4. Armor weight is proportional to the term
r5/6 g - 1/3,

Recent hypervelocity impact investigations of advanced armor a.nd/ or fin materials
such as beryllium and pyrolytic graphite have indiceted that these materials
exhibit brittle characteristics which make them unsuitable as space radiator
structural members (115). In this respect, the present approach advanced by
NASA to determine meteoroid armor should be used with restraint. The theory will
have to be modified to account for the very brittle radiator materials which
offer very attractive, but possibly erroneous, weight advantages over more

conventional materials such as aluminum and steel under the present method of

- 14 -
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armor determination.

3.4 Compatibility of Radistor Fin Materials to Tube Materials

Table 6 lists cambinetions of possible space radiator tube and fin materials.
These have been campared fram the standpoint of bonding and joining techniques,
thermal expansion limitations and susceptibility to galvanic corrosion. The fin
tube material cambinations marked with a dash (-) indicate that the combination
is either not applicable, not feasible, or no information is available on the

union.

3.4.1 Bonding and Joining Techniques

The method(s) by which fin materials can be fastened to tube materials is highly
dependent on the types of material involved and the radiator operating tempera-
ture. A detailed discussion of each possible method is beyond the scope of this

manual. However, the major techniques are delineated below.

l. Welding

a) heliarc
b) arc
¢) electron beam
2. Brazing
a) torch
b) furnace
3. Mechanical
a) casting
b) clamping and crimping (interference joints)

¢) pressure lamination

- 15 -
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d) extrusions

., Chemical

Another important aspect of Joining dissimilar fin-tube materials is the
consideration of thermal resistance (82, 83). This is especially important when
mechanical techniques have been employed. The presence of a gap between a tube
wall and a fin converts the mechanism of heat transmission from highly efficient
conduction to radiation. An increase in this thermal resistance from tube wall

to fin increases the condensing tempersture.

3.4.2 Thermal Expansion Limitetions

Large differences in thermal expansion coefficients between tube and fin radiator
materials subjected to large temperature varistions require special attention.

The use of these combinations is normally not recommended from a practical or an
economic standpoint. If & requirement for such combinations exists, the bond

can be made by bullding up layers of different thermal expansion materials, main-
taining the difference in thermal expansion coefficients small between adjacent
layers. Thermal expansion coefficients for various radiator material as a function

of temperature are compared in Figures 57 and 58.

3.4.3 Galvanic Corrosion
Direct contact between dissimilar metals such as copper and aluminum or aluminum

and steel are susceptible to galvanic corrosion (35). Salt water is considered

to be one of these enviromments. Excessive exposure (usually during ground testing)

of radiators of these types without adequate protection should be avoided.

Galvanic corrosion normally tskes the form of severe pltting.

- 16 -
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L4.,0 RADIATOR COATINGS

Radiator coatings provide protection for the substrate metal from vacuum
conditions of space as well as providing control of the thermal radiative and
absorptive properties of the surface. An effective radiator coating must have
a high infra-red or thermal emittance and, in the case of 2 low tempersture
rediator, low solar asbsorptance. Coatings meeting these requirements have been
developed and, in many cases, extensively tested under similated vacuum

conditions of space.

A litersture survey was conducted to determine the most effective coatings, their
applicable temperature range, the methods of gpplication, the substrates appli-
cable, and the testing duration. The results of this survey are shown in Tables

7(a) through 7(g).

4,1 Emittance

The tsbulation of total hemispherical emittance values in Tables 7(a) through
7(g) includes only those coatings or surfaces with values greater than .7 as
determined at test temperstures above 300°F for e minimum of 20 hours in a

similated space environment.

The results of extensive emittance coating studies by Pratt and Whitney Aircraft
(54) are reproduced in Figure 59. (Total Hemispherical Emittance versus
Temperature.) Only those costings possessing high emittances and good high
temperature stability under vacuum conditions are shown. In the above testing
program, temperatures were measured on the metal substrates. This eliminated the

need for temperature drop and opaqueness corrections and allows direct use of the

- 17 -
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emittances in radietor design.

4.2 Absorptivity

There are two types of thermal rediation in space. The first is solar, either
direct or reflected from planets (albedo), with a wave length of 0.2 to 3.0
microns. The second is infra-red or thermal being emitted from planets and
other astronomical bodies with a wave length of 5 to 50 microns. Due to this
wave length difference, almost all surfaces have difference absorptances to the

two types of radiation.

Thermal absorptance ls taken as being equal to thermal emittance and is usually
high as a result of a desire for a high thermal emittance. Solar absorptance,
on the other hand, is somewhat independent of thermal emittance and a balance
between high thermal emittence and low solar absorptance can be obtained and is
desireble, especially for a low temperature radiator. The importance of the
solar absorptivity is a function of the temperature level of the radistor and the
intensity of the incident solar energy. Solar sbsorptivity values have been
determined in the laboratory for various structural materials and coatings.

These have been included as part of Tables 7(a) through T(g).

k.3 Comparison Parsmeter (cX o/ € )

The ratio of solar absorptivity to total hemispherical emittance ({ S/ € H) is
an important parameter for comparing the performence characteristics of various
radiator materiels. The ideal radiator surface would have an X o/ EH = 0.

Since the ideal is unattainsble in reality, materials with 0<S/ € H ratios less

than .3 are considered acceptable (66). Values for ( X S/ GH) are shown in

- 18 -
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Tables 7(a) through 7(g) for same coatings and surfaces.

4.4 Coating Thickness

Thickness plays an important role in determining the emissivity and solar
absorptivity characteristics of a coating. Studies made with high emissivity,
low sbsorptivity inorganic paints (66) indicated that about 3 to 5 mils coating
thickness was required to cover metallic surfaces. The study also found that
solar sbsorptivity (O(S) and the solar absorptivity-emittance ratio (<7§s/ € H)
reached a minimm value with a 5 mil or greater coating thickness (Figure 60).
Multiple coats of 1 to 2 mlls built up to 5 mils gave indications of having

superior bonding properties than a single 5 mil coat.

4.5 Coatings and Substrates

4.5.1 Coatings
Coatings are classified as single oxides, multiple oxides, non-oxides, stably
oxided alloys and paints. The high emittance members of each group are shown as

part of Tables 7(a) through 7(g).

4,5.1.1 Single Oxides
The single oxides coatings screened by P.W.A. (54) are listed below. Total
hemispherical emittance values are shown for temperatures ranging from 300°F

minimm to 2200°F meximm.

Single Oxides Total Hemispherical Emittance
1. Aluminum Oxide (A1203) 69 - .63
2. Ceric Oxide .75 - .65
3. Chromic Oxide (Cr203) 71 - .84
- 19 -
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4. Cobalt Oxide (¢c,0)
5. Manganese Oxide (Mh203)
6. Nickel Oxide (N,0)
7. Silicon Dioxide (840,)
8. Stannic Oxide (8,0,)
9. Titania (T3005)

10. "Titanis Base" Powder

11. Zirconium Oxide (2,0,)

4.5.,1.2 Multiple Oxides

.88 - .90
75 - .85
A5 - .82
.87 - .70
.92 - .85
77 - .82
.83 - .88
.88 - .86

The multiple oxide coatings screened by P.W.A. (54) are listed below. Total

hemispherical emittance values are shown for temperatures ranging from 300°F

minimum to 2200°F maximum.

Multiple Oxides

1. Silicates - Zirconium Silicate
2. Spinels
a) Magnesium Aluminate (MgO - A1203)
b) 4O% Nickel Chrome Spinel
60% Silicon Dioxide
3. Titeanates
a) Barium Titenate (B,T;03)
b) Calcium Titanate (C,0 T, O,)
¢) Iron - Titanium Oxide
d) Iron - Titanium-Aluminum Oxide

4, Zirconetes - Calcium Zirconate

- 20 -
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.83 - .51
.80 - .60
.88 - .82
75 - 6L
81 - .92
85 - .87
.83 - .88
.62 - .56
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Minimm and maximm values of total hemispherical emittance are indicated for

all substrates tested regardless of substrate or coating thickness.

k.5.1.3 Non-Oxides
The non-oxide coatings screened by P.W.A. (54) ere listed below. Total
hemispherical emittance values are shown below for temperatures ranging from

300°F minimm to 2200°F meximum.

Non-Oxides Total Hemispherical Emittance
1. Borides
a) Crystalline Boron .70 - .88
b) Boron and Silica .78 - .79
c) Molybdenum Diboride L2 - 64
d) Tantalum Boride .49 - .59
e) Zirconium Boride 43 - .60
2. Carbides
a) Acetylene Black in Xylol T2 - .92
b) Boron Carbide .76 - .80
¢) Grephite Varnish .56 - .62
d) Hafnium Carbide 52 - .62
e) Molybdenum Carbide 42 - hg
f) Silicon Carbide 80 - .92
g) Silicon Carbide and Silicon Dioxide .85 - .87
h) Tentalum Carbide A - .59
i) Titanium Carbide A2 - 62
j) Venadium Carbide A48 -~ .60
- 21 -
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3. Fluorides - Calcium Fluoride 68 - 47

4., Nitrides - Boron Nitride in Synar 82 - .69

4.5.1.4 Stably Oxided Metals and Alloys

Some oxidized metals and their alloys exhibit total hemispherical emittance
values sbove .7. Unfortunately, their solar absorptivity values are in the same
range meking an oxided metal surface unfavorsble for use in low temperature

radiator-condensers.

In high temperature (above 1200°F) radiator-condenser applications (systems
condensing potassium or rubidium vapor), the effects of higher solar sbsorp-
tivities are not as pronounced and the use of oxided metal surfaces may be

warranted.

Oxided metal surfaces require heating to high temperatures to aeccomplish the
oxidation process. Typical oxidizing temperatures required for stainless steels

are 1800°F with similar levels for Inconel, Inconel X and Haynes Alloy 25.

The stably oxided metals surfaces screened by P.W.A. (54) are listed below.

Total hemispherical emittance values are shown for 300°F and 2200°F.

Metallic and Oxidized Metallic Surfaces Hemisphzgggil Emittance
1. Columbium and Oxidized Columbium .26 - .69
2. Columbium - 1% Zirconium Alloy 11 - .30
3. Cupric Oxide 86 - L6
4, Molybdenum .28 - .34
5. Oxidized Nichrome .13 - .82
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6. Lithiated and Oxidized Nickel .63 - .86
7. Oxidized AISI-310 Stainless Steel A7 - .8
8. Tantalum - -
9. Tungsten .03 - .17
10. Chromium Black .72 - .88
11. Platinum Black A1 o~ .Th

4.5.1.5 Paints

Organic Enamels

High emittance organic enamels are attractive from the standpoint that they are

easily applied and can be applied to any substrate.

Organic enamels were found to be unfit for long duration space spplications since
most of the coatings exhibit appreciable vapor pressures in a vacuum at room
temperature (68). The effect is even more pronounced at elevated temperatures.
The lowest temperatures expected would be about 200°F in the indirect fuel cell

radistor.

At best, organic paints may be used where short duration thermal control appli-
cations (weeks-months) are required below 575°F. Typical paints, their emittance

and absorptivities are shown in Table T(f) and T(g).

Water Glass Enamels

Silicate base paints are also known as water glass enamels. Extensive testing of
inorganic coatings indicates that alkali-metal silicates, pigmented with
refractory silicate materials, were found to possess low absorptivity-emissivity

ratios and high emissivities (66). These coatings have the advantage of appli-
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cation by standard spray, dip or brush techniques. Stabilization of the coating
can be accomplished by low tempersture curing cycles between 200 to 100°F. The
coatings are flexible and ductile, have excellent thermal stability characteristics
under 950°F and are resistent to thermal shocks. These coatings have been applied
on aluminum and msgnesium based substrates which mskes them excellent candidates
for low temperature water or organic radiator-condensers. Typical radiative

properties of inorganic coatings are included in Tables T7(a) through 7(4).

4.5.2 Substrate Materials

High temperature coatings (above 1200°F) heve been successfully bonded to a wide
range of substrates. These include sluminum (1010, 6061) 310 stainless steel,
columbium-1% zirconium, nickel, columbium and molybdenum. Substrate materials
such as beryllium and copper can accept some coatings applicable to 310 stainless

steel (49) due to the similarity in expension coefficients.

Where large differences in thermal expansion coefficlents exist between substrate
and desired coating, the difference can be reduced by multiple layering of

several coatings.

Low temperature organic and silicone coatings (below lOOOOF) can be bonded to
most materials with adequate surface preparation. Magnesium and aluminum sub-

strates can be coated with inorganic pigmented, alkali metal silicate vehicle

coatings.

4.6 Application Methods

4,6.1 Thermsl Spraying

High emittance coatings may be applied to radiator surfaces by the plasma-src
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.

and the Rokide thermal spraying processes.

The plasma-arc spraying process uses an electric arc to heat and ionize a vehicle
gas. The ionized gas is then combined with a second gas carrying the coating
material in powder form. The coating material powder is melted or softened by
the union and the combination impinges on the radiator surface. Inert gases

(argon, nitrogen) are generally used in the plasma-arc spraying process.

The major advantage of the plasma-arc spraying technique is the ability to protect
the coated material from an oxidizing atmosphere. The substrate material can be

maintained below 400°F while controlling coating thickness, finish and density.

The Rokide spraying process uses an ignited mixture of combustible gases and a
solid rod of coating material. The coating material rod vaporizes as it is fed
into the flame and is carried by the gas stream to the surface to be coated.
This process yields a more porous coating than the plasma-arc process because of

the lower gas velocities and temperatures used.

Plasma-arc and Rokide techniques are applicable to stainless steels, aluminum
alloys, refractory metals and their alloys, beryllium, copper alloys and cobalt

alloys.

The Rokide process requires the use of a coating rod materisl that matches the
thermal expansion characteristics of the substrate material for high temperature

applications.

4.6.2 Slurries

Coating material may be applied in slurry form.
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A slurry is a finely divided coating material suspended in a liquid binder.
It may be applied to the radiator surface by spraying, brushing or dipping.
The coating is air- and oven-dried to remove volatile liquid. The slurry

technique finds application where substrate materials cannot withstand the

extreme temperatures of thermel spraying. The more promising slurries considered

are listed below:

Slurry Curing Temperature
Aluminum phospheate 500 to 800°F
Synar 500°F
Xylol Room temperature

4.6.3 Electrodeposition

Electroplating is another method of applying a high emissivity coating to a
radiator surface. The method is extremely useful in controlling the thickness
of the desired coating. Metals and alloys that can be electroplated from agueous
solutions include chromium, copper, nickel and platinum. Titanium, refractory
metals and aluminum are electroplated from fused-salt electrolytes. Organic

solutions can also be used to electroplate aluminum.

Electrodeposition has meny advantages. Thermally stable pure metal coatings can
be deposited at near zero stress. Surface defects and roughness may be leveled
by epplications of bright copper and nickel. The thickness of a coating msy be

controlled from a few millionths of an inch to 100 mils.

Electroplating finds extensive use in plating chromium black and platinum black

on beryllium, stainless steels and nickel. Chromium black can be applied to any
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surface that can be plated with nickel or chromium.

4.6.4 Vapor Phase Deposition

Surface catalysis, thermal decomposition or reduction of a coating's volatile
compound are used to produce both metallic and non-metallic deposits on metal
substrates (69). Thermal decomposition of metal organic compounds produce deposits
of aluminum, chromium and nickel. Pyrolytic graphites can be produced by thermal
decomposition of methane and acetylene on a heated surface at temperatures between
1832 to 4532°F (69). The deposition temperatures required make high emittance
pyrolytic graphite coatings applicable only to low thermal expansion substrates.
The high total solar absorptances (70) ranging from .85 to .91 of graphite in
general make them applicable only to high temperature potassium or rubidium radi-

ator condensers.

The major application of vapor phase deposition for space radiator-condensers is
limited. It may be used as an intermediate layer of material between a metal
substrate and a high emittance - low solar absorptance coating when electroplating
is impractical. The techniqgue produces good coverage of the surface, a pore-free

coating, and has a high deposition rate (to 20 mils per hour) (69).

4.6.5 Other Coating Methods

Chemical deposition, vacuum metallizing and painting are also techniques for
coating materials. Chemical deposition finds application where the use of anodes
and currents are not feasible. Platinum black is coated on berylliium by an

immersion or displacement type coating process.
Vacuum metallizing consists of evaporating the coating metal and condensing it on
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the surface to be coated. The process is accomplished in a vacuum environment
and the coating thickness is generally less than 1 mil thick. The process is
not considered practical for large radiators and st the present time is relatively

undeveloped.,

Organic and inorganic coatings using volatile vehicles can be applied by the
conventional painting methods of brush, dip or spraying. Curing is done at room

temperature or in an oven at temperatures up to LOO®F depending on the type of

coating being applied.

- 28 -
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5.0 RECOMMENDATIONS

Based on the readily available data in the literature, the following areas of

work appear to warrant further attention to more reliably and accurately design

and anslyze condenser-radiators for space power systems:

l.

Lov temperature ( < 300°F) emittance coating testing. Most of this
wdfk has been in the higher temperature ranges, and as a result some
coatings unacceptable at high temperatures that may be acceptable at

fuel cell temperature levels, for instance, have been neglected.

Atmospheric testing of emittance coatings. Since almost all radiators
will be ground operated prior to flight, the effect of this operation

is important.

Compatibility of fin materials, tube materials and emittance coatings.
Information on & wider range of combinations, including beryllium, is

needed.

Meteoroid protection capsbility. Develop an expression for armor
protection thickness that accounts for the ductility of armor material

in addition to density and elastic modulus.
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TABLE 5A MATERIALS COMPATIBILITY WITH WORKING FLUIDS

CORROSION TEMPERATURE LIMIT

NUMBERS IN PARENTHESIS ARE REFERENCE NUMBERS.
TEMPERATURES SHOWN INDICATE NO OR LOW AMOUNTS OF CORROSION.
(o) MORE TESTING REQUIRED TO CHECK OUT LONG TERM CORROSION EFFECTS.

{N/C) NOT COMPATIBLE (VERY HIGH CORROSION RATE OR DISSOLVES)

WORKING WATER MERCURY RUBIDIUM POTASSIUM GANICS
FLUID Dowtherm~A Ortho~Xylene thglbenzene
Less |10,000] tess |10,000 | Less |10,000 | Less [10,000 (23) (26) (87) (26) (87)
Than Hrs. Than Hrs. Than Hrs. Thon Hrs. less }10,000] Less |10,000 | lLess }10,000
1000 or 1000 or 1000 | or 1000 or T*(\)gg Hrs. ngg Hrs. ?(‘)38 Hrs.
f 1 or 1 or or
MATERIAL Hrs. More Hrs. | More Hrs. | More Hrs. More Hrs. More Hrs. More Hrs. | More
' °F | o | ©°F | °F oF | of oF { o | o | of | of | of | o | of
(17 (30)
\ Ay
ALUMINUM 200 Ny 750 500 500
ALUMINUM ALLOYS (19 | (30)
l 200 N/C 750 750 750
@ (30) |(30}3D)} (14) (34)
200 900 | 800 | 1000 1200
BERYLLIUM
(36 (14)
500 1400°
(86) (14
COBOLT ALLOYS (17) 1250 | | 403 y (49 | (2 750
HAYNES -25 5004 (5000 17007 | 1800
1700
Hrs.)
(69)
750
COPPER NC
COPPER-NICKEL a7 N/C 750
200/500
(30) 750 500 500
I MAGNESIUM e
MAGNESIUM ALLOYS (“;’ 750
(62) (12)(33)
I NICKEL ALLOYS 1500 1535 750 750
(7) 30y | (02) .
INCONEL 500 (vC) 700 1700 750
(19} (30)
y 750
I MONEL 500+ O
HASTELLOY-B {69) (12) (2) 750
l <800 1700 1700
REFRACTORY METALS
(30) (62)
COLUMBIUM 1200 1700
(86) (14) (14) (86
Cb - 1% Zr 1200 | 1400/ 1500/ | 16
(7300 Hrs 2000 2200 [3000 Hrs
(14)
Mo - 5% Ti 1400/
2000
(30) 62)
MOLYBDENUM 500 1700
5%
(30) (3%%0 (62)
I TANTALUM 1100 Zbﬁrs ) 1700
30) ’ 29714}
Cb-IOW-1 Zr 2000
900 2000 Hr
l AS-55 (29)(14)
2000




TRW EQUIPMENT LABORATORIES

TABLE 5B  MATERIALS COMPATIBILITY WITH WORKING FLUIDS

CORROSION TEMPERATURE LIMIT
WORKING WATER MERCURY RUBIDIUM POTASSIUM ORGANICS
Dowtherm~A | Ortho-Xy! 1
FLUID Less 10,000] tess |10,000| Less |10,000 | tess |10,000f V(3 s | Erysazsne
Than Hrs. Than Hrs. Than Hrs. Than Hrs. Less [10,0001 Less [10,000 | Less [10,000
1000 or 1000 or 1000 or 1000 or Than Hrs. }‘}688 Hrs. | Than Hrs.
R . . 1000 or or 1000 or
MATERIAL Hrs. More Hrs More Hrs More Hrs More Hre More iy More brs. | More
oF of OF OF OF oF of oF OF oF OF OoF OF of
FERROUS METALS
(17) 30)31] (12 33)62)] {14)
300 SERIES 500/ ( 7)5(0 1400/ ( l)efoo) (% 750 750 750
600 1600 Hrs
(7} (30) 62
400 SERIES :gg/ 1100 1(602) 750
W CARBO (14) (30) | (62) (62) X
LO N ggg/ 1050 | 900 900 750 500 500
IRON BASE SUPER- (30) 750
ALLOY A286 900
PRECIPITATION 19)
HARDENING (17-4PH, 800/ 3,° 32%2) 750
AM 350, PH 15-7 Mo) 1350
30)(22)
SICROMO 55 1200
TITANIUM (19) (62)
570 1100
(14)
VANADIUM (30) 1000/ (62)
900 1400 1700
NIOBIUM- (19)
VANADIUM ALLOY ~900
ZIRCALOY-2 (19) (19 <
b e 500 <500
17) (62)
ZIRCONIUM 500+ 1100

NUMBERS IN PARENTHESIS ARE REFERENCE NUMBERS.

TEMPERATURES SHOWN INDICATE NO OR LOW AMOUNTS OF CORROSION.
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